Задача А. Собери костюм!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Через неделю у Ани будет отчетный концерт. Сегодня же ей необходимо собрать все костюмы. Костюмерная ансамбля «Конфетти-ТОП» представляет собой длинную комнату, в которой у одной стены друг за другом стоят шкафы для костюмов. Каждый шкаф состоит из разделов, которые для простоты называют полками. Такая полка состоит из перекладины, разделенной специальными ограничивающими насадками на ячейки. В одной ячеке может висеть лишь один элемент костюма, например, штаны, пояс или платье. Евдокия Александровна, костюмер «Конфетти-ТОП», придерживалась правила, что всегда при подготовке новых костюмов шьется определенное количество каждого из размеров. Шкала размеров единая для всех элементов костюма. В костюмерной каждый элемент вешается подряд начиная с первой ячейки первой полки первого шкафа. Если на полке не хватает ячеек — элемент переходит на полку ниже, если в шкафу закончились полки — переходит в соседний справа шкаф. Элементы идут последовательно по возрастанию размеров. Будем считать, что у всех элементов есть привязка к размеру. Костюм — набор из нескольких элементов.

У Ани есть список, в котором написана последовательность элементов в шкафах. Ей нужно отыскать в этом многообразии свои костюмы. Аня задаст вам несколько раз вопрос: «Где лежит первый элемент с номером e размера s». Ответьте на все её вопросы!

Формат входных данных

В первой строке вводятся числа $p, m \ (1 \leqslant p, m \leqslant 10^5)$ — количество полок в шкафу и ячеек на полке соответственно.

Во второй строке вводится число k ($1 \le k \le 100$) — количество размеров костюмов.

В третьей строке вводятся k чисел c_i ($1 \le c_i \le 1000$) — количество костюмов i-го размера.

В следующей строке вводится число q ($1 \leqslant q \leqslant 1000$) — количество вопросов Ани.

В q последующих строках вводятся вопросы в виде e, s ($1 \le e \le 10^9$, $1 \le s \le k$) — номер элемента костюма в списке и номер требуемого размера.

Формат выходных данных

На каждый из q вопросов необходимо ответить тремя числами в одной строке — номером шкафа (слева направо), номером полки (сверху вниз) и номером ячейки (слева направо).

Система оценки

Подзадача	Баллы	Ограничения	Необх. подзадачи
У	0	Тесты из условия	_
1	16	$k = 1, c_1 = 1$	_
2	21	$e \leqslant 100$	У
3	63	Нет ограничений	У, 1–2

Пример

стандартный ввод	стандартный вывод
4 7	1 1 1
5	1 1 5
1 3 2 4 1	1 3 2
7	2 1 5
1 1	3 2 3
1 3	6 3 7
2 3	18 2 6
3 5	
6 5	
15 4	
45 3	

Замечание

При решении используйте 64-битный тип данных (int64 в Pascal, long long в C++ или long в Java).

На картинке изображено расположение костюмов в примере (первые 3 элемента). Жирным обведены ячейки, которые были нужны Ане.

	Ячейка №1	Ячейка №2	Ячейка №3	Ячейка №4	Ячейка №5	Ячейка №6	Ячейка №7	Ячейка №1	Ячейка №2	Ячейка №3	Ячейка №4	Ячейка №5	Ячейка №6	Ячейка №7
Полка №1	Элемент 1	Элемент 3	Элемент 3	Элемент 3	Элемент 3	Элемент 3	Элемент 4	Элемент 4						
полка№п	Размер 1	Размер 2	Размер 2	Размер 2	Размер 3	Размер 3	Размер 4	Размер 4	Размер 4	Размер 4	Размер 4	Размер 5	Размер 1	Размер 2
Полка №2	Элемент 1	Элемент 1	Элемент 1	Элемент 1	Элемент 2	Элемент 2	Элемент 2							
HOJIKA 1922	Размер 4	Размер 4	Размер 4	Размер 5	Размер 1	Размер 2	Размер 2							
Полка №3	Элемент 2													
HOJIKA 193	Размер 2	Размер 3	Размер 3	Размер 4	Размер 4	Размер 4	Размер 4							
Полка №4	Элемент 2	Элемент 3	Элемент 3	Элемент 3	Элемент 3	Элемент 3	Элемент 3							
i io/ika 194	Размер 5	Размер 1	Размер 2	Размер 2	Размер 2	Размер 3	Размер 3							

Шкаф №1 Шкаф №2

Задача В. Ваня поступает в университет

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Ваня заканчивает 11 класс. Совсем скоро он сдаст Единый Хуснешский Экзамен (ЕХЭ) и ему надо будет поступать в ВУЗ. Дело в том, что никто в Хуснеше не уверен в успешной сдаче ЕХЭ, поэтому Ваня со своими друзьями решил поступать на особых условиях. На протяжении всего 11 класса они участвовали в различных олимпиадах, и сейчас все они победители и имеют право на поступление на льготных условиях.

В Хуснеше действуют такие правила приема: Министерство просвещения Хуснеша в начале учебного года закрепляет за каждой олимпиадой определенное количество степеней дипломов, а также для каждой степени определенное количество баллов. При поступлении каждый абитуриент выбирает какие-то дипломы на свое усмотрение и подает их в ВУЗ. Балл абитуриента — сумма баллов за все выбранные им дипломы. Перед приемом заявлений ВУЗ устанавливает максимальное количество дипломов, на основе которых абитуриент претендует на поступление, минимальный пороговый балл для автоматического зачисления и минимальный пороговый балл для участия в дополнительных испытаниях в ВУЗе. Сначала участники зачисляются без вступительных испытаний (БВИ), кто не прошел участвует в дополнительных вступительных испытаниях (ДВИ), остальные отбираются на основе ЕХЭ.

Ваня знает, какие дипломы имеют его друзья, а также в какие вузы они хотят поступить. Он решил оценить шансы своих друзей на успешное поступление. Для этого он просит Вас проанализировать данные и сказать ему, кто поступит по БВИ, кто будет писать ДВИ и кто будет поступать по ЕХЭ.

Формат входных данных

В первой строке вводится число $n \ (1 \le n \le 100)$ — количество олимпиад.

Далее задаются n олимпиад в таком формате:

В первой строка описания олимпиады содержит два значения c_i — название олимпиады и количество степеней дипломов. $1\leqslant c_i\leqslant 15$, название олимпиады состоит не более чем из 15 строчных и прописных букв английского алфавита. Гарантируется, что все названия уникальны.

Во второй строке описания олимпиады вводятся c_i чисел $p_{i,j}$ ($1 \le p_{i,j} \le 10^3$) — количество баллов за каждую степень диплома. Гарантируется, что более высокая степень диплома приносит больше баллов.

В следующей строке записано число $q\ (1\leqslant q\leqslant 100)$ — количество друзей Вани.

Далее задаются достижения каждого друга в таком формате:

В первой строке написаны числа $m, k, x, y \ (1 \leqslant m, k \leqslant n, 1 \leqslant y \leqslant x \leqslant 10^5)$ — количество дипломов у человека, количество дипломов, учитываемых вузом, минимальные пороговые баллы БВИ и ДВИ соответственно.

В следующих m строках задаются результаты участия в олимпиаде в формате: name $_i$ r_i — название олимпиады и результат участия. Гарантируется, что такая олимпиада существует и у нее есть такая степень диплома. Также гарантируется, что человек может иметь только один диплом одной олимпиады.

Формат выходных данных

Для каждого из q друзей выведите «BVI», если человек поступит без вступительных испытаний, «DVI», если человек будет участвовать в дополнительных вступительных испытаниях, и «ARMY», если человек будет поступать по EXЭ.

Система оценки

Подзадача	Баллы	Ограничения	Необх. подзадачи
У	0	Тесты из условия	_
1	10	m = 1	_
2	13	k = 1	_
3	8	x = y	_
4	69	Нет ограничений	У, 1–3

стандартный ввод	стандартный вывод
2	ARMY
PermOlymp 5	BVI
43 32 20 15 5	DVI
ROI 4	
31 23 17 6	
3	
1 2 40 35	
PermOlymp 2	
2 2 40 15	
PermOlymp 1	
ROI 2	
2 1 21 19	
ROI 3	
PermOlymp 3	

Задача С. Поход в магазин

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Майя живет в прямоугольном городе, где всего n улиц по горизонтали и m улиц по вертикали, а на пересечениях этих улиц стоят дома. Если дом находится на пересечении i-й улицы по горизонтали и j-й улицы по вертикали, то будем считать, что дом находится в координате (i,j). Майя живет в доме с координатами (X_h, Y_h) .

Сегодня Майя решила приготовить пахлаву, рахат-лукум, пишмание, кадаиф и халву. Все это очень вкусно, но не все продукты Майя нашла у себя дома. К счастью, недалеко есть магазин со всеми недостающими ингредиентами. Магазин находится в доме с координатами (X_s, Y_s) .

В прямоугольном городе очень строгие правила передвижения. Тротуаров там нет, но есть мостики между соседними по улице домами, то есть из дома с координатами (i,j) можно попасть в дома с координатами (i+1,j), (i,j+1), (i-1,j), (i,j-1), если такие существуют. Чтобы перейти мост Майе потребуется 1 секунда. Через некоторые дома Майя не будет ходить, потому что они ей не нравятся.

Для ускорения движения некоторые дома соединили односторонними телепортами, то есть если из дома с координатами (i,j) есть телепорт в дом с координатами (v,u), то из дома (i,j) можно попасть еще и в дом (v,u). На телепортацию из одного дома в другой Майя тратит 0 секунд. В дома, которые не нравятся Майе, телепортироваться нельзя.

Вам требуется посчитать минимальное время в секундах, которое может затратить Майя на путь из дома в магазин.

Формат входных данных

В первой строке входного файла вводятся два натуральных числа n и m $(1 \le n, m \le 100)$ — размеры прямоугольного города.

В следующих n строках вводятся по m целых чисел, каждое из которых равно 0 или -1 (0 — если дом нравится Майе или -1 — если не нравится).

В следующей строке вводится число $k \ (0 \le k \le n \cdot m)$ — количество телепортов в городе.

В следующих k строках вводятся по четыре натуральных числа (i,j),(v,u) — координаты домов, описывающие телепорт $(1 \le i, v \le n, 1 \le j, u \le m)$.

В последней строке вводятся координаты дома Майи (X_h, Y_h) и координаты магазина (X_s, Y_s) , $(1 \leq X_h, X_s \leq n, 1 \leq Y_h, Y_s \leq m)$.

Гарантируется, что магазин и собственный дом нравятся Майе.

Формат выходных данных

Вам требуется вывести ответ на задачу. Если же из дома Майи нельзя добраться до магазина, выведите -1.

Система оценки

Тесты	Баллы за один пройденный тест	Ограничения
1	0	Тест из условия
2 - 8	2	$n, m \leqslant 35$
9 - 15	3	$n, m \leqslant 65$
16 - 25	4	$n, m \leqslant 95$
26 - 30	5	$n, m \leqslant 100$

XII Краевая олимпиада школьников по программированию. Заключительный этап Пермский край, Россия, 7 мая 2022 года

стандартный ввод	стандартный вывод		
3 3	1		
0 -1 0			
0 0 -1			
0 0 0			
2			
1 1 2 2			
1 1 3 2			
1 1 3 3			

Задача D. Урбанизация Лайнландии

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Лайнландия — страна, заключенная на координатной прямой между точками l и r. Города Лайнландии — точки с целочисленными координатами на этом отрезке.

В 2022-м году появился новый тренд — электрические самокаты. Это очень универсальный личный транспорт, двигаться на котором нужно исключительно по специальным дорожкам, которых в Лайнландии пока нет.

На заре хайпа самокатов президент Лайнландии утвердил начало урбанизации с целью обеспечения возможности передвижения на них между городами его страны. Весь этот процесс можно описать запросами двух типов:

- 1. На отрезке с концами в точках a и b строятся дорожки так, что между любой парой городов этого отрезка существует путь для электросамоката.
- 2. Президент интересуется у Вас, можно ли на электросамокате добраться из города a в город b.

Ваша задача — ответить на все вопросы президента Лайнландии.

Формат входных данных

В первой строке входного файла находится три целых числа l, r, q $(-10^5 \leqslant l \leqslant r \leqslant 10^5, 1 \leqslant q \leqslant 10^5)$ — границы Лайнландии и количество запросов по её урбанизации.

В следующих q строках описывается процесс урбанизации в виде троек целых чисел type, a, b ($type \in \{1,2\}, l \leqslant a, b \leqslant r$). Если type = 1, то описывается действие первого типа, если же type = 2 — второго.

Формат выходных данных

На каждый вопрос президента Лайнландии выведите «YES» (без кавычек), если между заданной парой городов существует путь для электросамоката, иначе «NO». Каждый ответ нужно давать в отдельной строке.

Система оценки

Подзадача	Баллы	Ограничения	Необх. подзадачи
У	0	Тесты из условия	_
1	45	$(r-l+1) \leqslant 500, \ q \leqslant 100$	У
2	55	_	У, 1

стандартный ввод	стандартный вывод		
-5 5 5	NO		
2 -5 5	YES		
1 -5 -1	YES		
2 -4 -2			
1 5 -1			
2 -5 5			

Задача Е. Петя и web-сервис

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Петя уже давно грезит мечтами о создании своего web-сервиса.

У Пети есть много друзей, с которыми он хочет делиться секретной информацией. Но есть и немало недругов, которым эта информация попасть не должна!

Сервис Пети будет состоять из множества web-страничек и ссылок. На некоторых страничках будет расположена секретнейшая информация.

Изначально пользователи попадают на страничку с номером 1.

Затем, после того, как пользователь придумает и введёт какое-то число от 1 до E, его перебросит на новую страницу, где тот снова придумает новое число от 1 до E и т.д.

Назовём выносливостью L пользователя то, сколько раз он готов придумывать числа и перехолить по ссылкам.

Подсчитайте, сколько есть различных вариантов загадать **ровно** L чисел, которые приведут к секретной информации (то есть страница, на которой остановится пользователь после ввода последнего числа, будет содержать секретную информацию).

Формат входных данных

В первой строке входного файла находится пять целых чисел: N, M, K, L, E ($2 \le N \le 100, 1 \le M \le 10^5, 1 \le K \le N, 1 \le L \le 10^{18}, 1 \le E \le 10^9$) — количество веб-страничек, количество ссылок, количество страниц с супер-секретной информацией, выносливость пользователей и максимальное число, которое может придумать пользователь.

Затем идут m строк, в каждой из которых находится l_i , r_i , s_i ($1 \le l, r \le n$, $1 \le s_i \le E$) — номер страницы откуда идёт ссылка, номер страницы куда идет ссылка и число, назвав которое пользователя перекинет из l_i -й страницы на r_i . Гарантируется, что все пары (l_i , s_i) различны.

Если пользователь называет число, по которому нет ссылки на любую другую страницу, то он никуда не переходит и остается на той же странице.

Затем идёт одна строка, в которой K различных чисел от 1 до N — номера страниц с секретами.

Формат выходных данных

Выведите количество последовательностей длины L, которые ведут к секретной информации. Так как это число может быть большим, выведите его по модулю $10^9 + 7$.

Система оценки

Подзадача	Баллы	Ограничения	Необх. подзадачи
У	0	Тесты из условия	_
1	20	$N \le 10, \ M \le 10, \ L \le 10, \ E \le 100$	У
2	50	$N \leqslant 100, \ M \leqslant 1000, \ L \leqslant 100$	У, 1
3	30	Нет ограничений	У, 1, 2

стандартный вывод
388

Задача F. Перемножь последовательность!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Иван всегда мечтал поступить в Иркутский Техникум Моделей Одежды. Его мечта сбылась и он, наконец, пришел на первую лекцию. Ваня очень удивился, что даже в ИТМО преподают анализ последовательностей — предмет, который вызывает у него трудности еще со школы. Темой первой лекции, которую преподаватель решил прочитать студентам, стало произведение последовательности и его применение в решении задач. Например, такое произведение для последовательности $\{1,20,80\}=1\times20\times80=1600$.

На следующий день у Ивана был урок информатики, которая по неизвестным ему причинам преподается в ИТМО. Лектор сильно рассердился на группу за то, что она очень громко обсуждала тему произведения последовательностей в классе, и решил, раз группа хочет решать задачи на последовательности, то он даст именно такую задачу. А вот и она:

Дана последовательность a_i из n натуральных чисел. Вам необходимо научиться отвечать на запросы двух видов:

- 1. Необходимо найти индекс конца минимального подотрезка последовательности, начинающегося с индекса i и имеющего произведение строго большее x. Подотрезок подпоследовательность с подряд идущими индексами. То есть по заданным i и x необходимо найти такое минимальное j, что произведение последовательности $\{a_i, a_{i+1}, a_{i+2}, \ldots, a_j\}$ будет строго больше x.
- 2. Необходимо изменить значение элемента последовательности под индексом i.

Ваня не ожидал, что в первые два дня у него будут два самых нелюбимых предмета, поэтому он просит Вас помочь ему.

Формат входных данных

Первая строка содержит числа n и q $(1\leqslant n\leqslant 2\times 10^5,\ 1\leqslant q\leqslant 5\times 10^5)$ — размер последовательности a_i и количество запросов.

Во второй строке содержится n чисел a_i ($1 \le a_i \le 10^{18}$) — исходные значения элементов последовательности.

В следующих q строках, описываются запросы в виде type, i, x ($type \in \{?, =\}$, $1 \le i \le n$, $1 \le x \le 10^{18}$). Если type равен '?' (без кавычек), то перед вами запрос первого типа. Если type равен '=' (без кавычек), то перед вами запрос второго типа.

Формат выходных данных

Для каждого запроса первого типа выведите искомый индекс. Если такого индекса нет, выведите -1.

Система оценки

Подзадача	Баллы	Ограничения	Необх. подзадачи
У	0	Тесты из условия	_
1	20	$x, a_i \leqslant 10^8, n \times q \leqslant 10^7$	У
2	20	нет запросов 2 типа	У
3	30	$q \leqslant 2 \times 10^5$	У, 1, 2
4	30	_	У, 1, 2, 3

стандартный ввод	стандартный вывод
5 4	4
2 10 2 10000000000000000000000000000000	3
? 1 100	4
? 1 20	-1
? 1 1000	
? 5 2	